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The dynamic behaviour of binary blends of linear polystyrene fractions in the terminal zone of the
relaxation spectrum presents interesting peculiarities which have been discussed in a previous paper by
Montfort. The viscoelastic properties are characterized by a representation in the complex plane of
viscosities. In this paper, we propose an empirical blending law which represents such behaviour over
a large range of frequencies. The conclusions of this law on the limiting values of 1g and Jg are com-
pared with those deduced from the blending laws of Graessley and BMEO.

INTRODUCTION

The study of binary blends of polystyrene fractions exhibits
a phenomenon of double relaxation in the terminal zone of
the relaxation spectrum. Each field can be attributed to the
prevailing action of one of the two components of the blend.
This study, undertaken by one of our team, has been the
object of a recent paper’. In the first section, we will sum
up the main results of the study.

We will then describe the observed behaviour by stating
a blending law expressing the properties of the blend as a
function of the properties of each component and of the
composition of the blend. The expression for the complex
viscosity of blends, ng(w), that is proposed accounts for
viscoelastic properties in the plateau zone and the terminal
zone, and particularly for the variations of the limiting
values ngp and J3.

Other authors have proposed blending laws®~5 that ex-
press the relaxation times distribution function of the blend,
Hy(7), as a function of that of each component. We will
especially refer to the quadratic laws of Graessley? and
BMEQ?. An interesting critical study of these two laws has
already been undertaken®. We will limit ourselves to examin-
ing the conclusions of both laws on limiting values ngp and
39, and in particular, their agreement with the experimental
results.

EXPERIMENTAL

The dynamic measurements were made with a Contraves—
Kepes balance rheometer. The sample, located between two
concentric rotating spheres, experiences a sinusoidal shearing®.
Complex viscosity was measured in the temperature range
150°—~190°C, at frequencies varying from 104 to 20 Hz.

Materials

The fractions, manufactured by the Waters Associates
Corporation, have a polydispersity lower than 1.1. We have
used four fractions with an average molecular weight higher
than the critical molecular weight for viscosities, M, '?
(Table 1).

From these fractions, we have made up three series of

blends. Each blend is designated as follows. The letter M
is followed by six figures: the first two relate to the compo-
nent with the lowest weight (component 1); the next two
to the component with the highest weight (component 2);
the last two represent the weight fraction ¢ of component
2 in the blend. We will call r the weight ratio of both
components: r =M,, | /My.

Considering the fractions as strictly monodisperse pro-
ducts, the average weight M,,, of the blend can be calculated
from the weight fractions by the expression:

Mw =(l _q))Mwl +"I)Mw2 (1)

This value is entered in Table 2, which contains data relating
to all the blends.

Table 1 Narrow molecular weight distribution polystyrene samples
Sample M,
PS 04 35 000
PS 1 110 000
PS 20 200 000
PS 40 400 000
Table 2 Features of the binary blends
Series Components 7 Blends o My,
M0440 PSO4 + 1.5 M 044005 0.05 53 350
PS 40 M044015 0.15 90 500
M1140 PS 11+ 3.64 M 114005 0.05 124 500
PS 40 M 114010 0.10 139 000
M 114015 0.15 153 500
M 114025 0.25 182 500
M 114050 0.50 255 000
M1120 PS 11+ 1.82 M 112015 0.15 123 500
PS 20 M 112030 0.30 137 000
M 112070 0.70 173 000
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Figure 1 Master curves of reduced complex viscosity for binary
blends M 044005 (a), M 114015 (b} and M 112015 (c)

Measurements and results

We have shown' that:

(1) the use of complex viscosity 7*(w) is interesting in
order to represent the viscoelastic behaviour of high polymers
in the terminal zone of the relaxation spectrum. It allows us
to define: the zero shear viscosity

no=lim 7'
w=0

the steady-state compliance

"

n
lim —

J0=__1_
nf w->0 w

e

and for the fractions, an average relaxation time

1
To= —
Wm

whege wp is the frequency corresponding to the maximum
ofn’;

(2) in the complex plane, we can superpose the curves rela-
ting to one sample (fraction or binary blend) by representing
the reduced complex viscosity:

(3) the curves 1, and 7, can be represented as a function
of frequency by master curves, using a shift factor, a7, which
has the same value for all the fractions and their binary
blends.

278 POLYMER, 1978, Vol 19, March

The thermal variations of ng and 7¢ for the fractions show
that, in the experimental temperature range (156° to 186°C):

ToT = Mor
T0Ty, M0T,

ar=

which implies that JO (which is proportional to the ratio
70/Mg, as indicated by Rouse’s theory” applied to an undilu-
ted polymer®) is independent of temperature, within the
limited temperature range;

(4) the curves relating to binary blends show a double
relaxation phenomenon. The relative importance of each
field varies in the same way as the proportion of the corres-
ponding component in the blend. Their coupling is all the
greater as the ratio 7 is nearer to unity (Figure I).

(5) the variations observed for the limiting values ngp
and ng of binary blends are in agreement with those given
in the literature: the variations of ngp as a function of the
molecular weight can be expressed by ng = kM, 3.4 a5 for
the fractions® ! (Figure 2).

JY, passes through a maximum for a certain composition
of the blend'%'?!3 (Figure 3).

Equations (1) and (2) indicate that ngp can be expressed
as a function of ng; and ng> in the form:

nop /34 = (1 — $)moy 13-4 + gmpy 1134 3)
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+
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Figure 2 Zero shear viscosity plotted logarithmically against the
molecular weight My, for the fractions and their binary blends at
186°C
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Figure 3 Steady state compliance for binary blends of the series
M 1140

BLENDING LAW

We will use an analytical model in order to describe the
rtheological behaviour of these binary blends. After stating
the law, we will compare it with the experiments and draw
a parallel with the blending laws of Graessley and BMEO.

Stating the blending law

Let us try to state a simple relationship relating the com-
plex viscosity of binary blends to the various parameters of
the system. That is:

ng =F(w, ¢, 7, n01,M02, 701, 702, )

The number of independent parameters can be reduced: the
variable T (temperature) governs the variations of ng; and
7oi (( = 1,2) and can then be considered as an implicit
variable; the expression for the complex viscosities ;" for
the components can be expressed by

n¥ =noinzi(wro;) 4)
Hence, we can write:
ng =F($, r, 1}, m5)

An extension of the blending law for limiting viscosities can
then be written under the form:

np(@)P = (1~ ayni @)/ + ams() /P )
with a = f{¢,r), which meets the time/temperature superim-

position principle.
When w — 0, this expression leads to the relation:

s (@)VP = (1 — a)ng /P + ang, V1P

which must agree with equation (3). Hence we infer:

_(1—g+rgp4F g

6
r3.4/P —1 ( )
using
LMz _ (11(2 34
My no1

This equation indicates that the proposed law [equation (5)]
only depends on one adjustable parameter, p. In particular,
ifp=34,a=¢.

We can also write equation (5) in the form:

nop WP (@) V/F = (1 — ynoy YPnpy ()P + amgy !/ Pny ()P

or

np@)VP = (1 - 91 (@) VP +0ma ()P %
with
g [102) o P o
n0b r34/P_ 1 (1+¢+rp)34/P

Comparison with the experimental data

We will define the variations of parameter p as a function
of ¢ and r from our experimental results and those of
Masuda®.

Test onn* or G*. For each blend, we are looking for the
best value of p by adjusting the experimental values of 7,
and the values drawn from equation (5), taking into account
both the experimental values of n} and 13 at the same
frequency and the value of parameters ¢ and r.

For this, we need pairs of experimental values of (n},n%)
corresponding to the same frequency range. The experimen-
tal device does not enable us to obtain a sufficient overlap-
ping. Sometimes even the frequency ranges are separated,
as is shown by the curves relating to the PS 11 and the PS 40
in Figure 6.

Hence, we must search for an analytical expression
accounting for our results on fractions in the experimental
field and to assume analytical extensions in the frequency
range that is beyond our reach. We have used an expression
proposed by Le Traon'® in the form:

. 1+ja ®
n*=ny ————
0 1+j(wT +a)

where a is a parameter with the same value for all fractions
studied (2 = 0.22 £ 0.01) and 7 is linked with 7¢ by the
relation:

T

70 1 +a)2
Figure 4 shows the agreement between the experimental
points and the curves inferred from Le Traon’s expression.
Using this analytical expression, and taking into account
the accuracy of the measurements (with a relative uncertainty
of 5%), the best agreement is obtained for series M 1120
(Figure 5) and M 1140 (Figure 6) with P= 10+ 1.

POLYMER, 1978, Vol 19, March 279



Blending law for binary blends of polystyrene: J. P. Montfort et al.

O-5¢

L 1 1

O -1 @) !
Log wty,

Figure 4 Frequency dependences of the componenents of the
reduced complex viscosity for the fractions studied; the curves are
deduced from equation {8)

Conversely, for series M 0440, the use of equation (7)
does not lead to a satisfactory agreement. We have represen-
ted on Figure 7 the curves corresponding top = 10. The
origin of the discrepancy certainly lies in the use of Le Traon’s
expression for representing the behaviour of the PS 04. In
particular, in the higher frequency range, this analytical
form leads to values for n"'(w) which are too low.

In order to confirm the validity of the proposed law, it
should then be possible to discard an analytical expression
representing the complex viscosity of fractions and to dis-
pose of data in the same frequency range.

Then we have used the results of Masuda et al.'® for the
variations of the complex modulus G# of binary blends of
polystyrene fractions (Table 3).

Knowing that G * =jwn*, the blending law can be written

GH(W) /P = (1 - 0)GI(w)V/F + aG3 ()P &)
We have noticed on the corresponding curves the values of
G’{ and G; for one particular frequency and entered these values
into equation (9). The values of o are obtained from equa-
tion (6).

The curve obtained for the M 065850 (Figure 8) with p =
10 is in good agreement with the experimental points. This
blend, which corresponds to a value of r just near 10 — then
comparable with our series M 0440 — shows that the discre-
pancy noticed on this series was actually due to the use
of Le Traon’s expression.

Equation (9) correctly represents the other results of
Masuda. Figure 9 shows the agreement for the series BB3
(the blend M 051780 is not represented) with again p ~10.
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Test on the limiting values ngy, and J9 eb. Equation (5)
should also account for the experimental variations of the
limiting values ngp and Jeb

The experimental blending law on limiting viscosities
{equation (3)] is verified by the relation that we propose,
as a has been defined from this blending law.

The expression for J9, can be inferred from equation
(7), knowing that:

J%=— lim ="
Te —8;,w—>0w Nop w0 w

and hence,
1 1
J(e) =— lim {—Im [a- 5)"7:1((*’)1/1’ +0ny, (w)l/P)P
nw=>0 |w

It may be noted” that for viscoelastic liquids at very low
frequencies, the storage and loss moduli reduce to:

G' = wngs?
G"=wmng
hence
n* =n9(1 —jwngJ?)
and

=1 = ongJ?
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Figure 5 Curves of the reduced complex viscosity deduced from
the blending law [retations (7) and (8}] for the series M 1120
a: M 112015; b: M 112030; ¢: M 112070
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Figure 6 Curves of the reduced complex viscosity deduced from the blending law for the series M 1140: (a) PS 11; (b) M 114005; (c) M 114010;
(d) M 114025; (e) M 114025; (f) M 114050; (g) PS 40; at T = 186°C

The latter expression implies for n¥, and n,%: 1-0+T80
My = w[(1 = 0o 39 + Ongp ]
with
and hence
0 s g ponoler o
5, = (1 —6)mo1Jel + 6noa/e2 0% 102
Nob
Curve A in Figure 10 shows that there is satisfactory

We have seen that ngJ g is proportional to an average agreement between the experimental points (series M 1140)
relaxation time of the terminal zone (for instance, to 7). and the curve inferred from equation (10). This expression
Hence, we can deduce from equation (3): also accounts for the results obtained by other authors on
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Figure 7 Curves of the reduced complex viscosity deduced to the
blending law for the series M 0440: {(a) M 044005; (b) M 044015

Table 3 Binary blends studied by Masuda et al. 10

Series Components r Blends [ My,
BB 1 PS 06 + 9.9 M 065850 0.50 320 000
PS 58
BB 2 PS 21 + 1.63 M 213550 0.50 288 000
PS 35
BB3 PS 05 + 3.56 M 051720 0.20 70900
PS 17 M 051740 0.40 95 000
M 051760 0.60 119 000
M 051780 0.80 143 000

binary blends of polystyrene fractions, as is shown by
Figure 11.

Quadratic laws of Graessley and BMEO. Other authors
have dealt with the binary blends of polystyrene fractions
and attempted to account for their rheological behaviour,
in particular from an analysis of the function of distribution
of relaxation times Hp(7). So they have stated blending
laws expressing Hj (1) as a function of the relaxation spec-
trum of each component H{(7), H3(7) and of the composi-
tion of the blend.

In the quadratic laws of Graessley and BMEO, ngp and
J3, can be expressed as functions of the composition of the
blend.

(1) The Graessley blending law is written:

Hy(1) =(1 — ¢)2H1(r) + (1 ~ $)[H12(r) +Ha1(r)] + $2H (1)

in which Hy5(r) and H,1(7) are terms of coupling.
It leads to the following expressions:

nob =no1l( 1 — ¢)? +dy ¢(1 — ¢) + R¢?]
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“ T - 9)2 +d1o(1 — 9) +Re?]?

in which R = (M,,2/M;1)3-° and d1 and d are functions
depending on various parameters of the system and whose
values have been tabulated.

The expression for ngp, gives values of the limiting visco-
sity blends which are too high, whereas that of J9p satisfac-
torily accounts for the experiment, as is shown by the curve
B in Figure 10.

(2) The BMEO blending law is written:

(11

Hy(r) =(1 — ¢)2H, (xi) +20(1 - ¢)Hn({—) + 62, (i)

11 12 A22

A11, A12 and Ay are shift factors which permit us to express
nop and Jeob as:

My \?_ (=0 +r2g)?
J =J0 _z__ =J0 -
89) el (Mw) el(1_¢+r¢)4 (12)

The expression for ngp, is in agreement with the experi-
mental law [equation (3)], but that of J%, is not suitable.
The curve C of Figure 10 shows indeed that the values of

-5 -3 - |

Figure 8 Frequency dependences of the components of the dyna-
mic modulus for the blend M 065850 (results of Masudal®): the
curve is deduced from the blending law [equation (9)]. The extreme
curves represent the experimental variations of the dynamic modulus
of the components of the blend
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Figure @ Curves of the dynamic modulus deduced to the blending o o5 I

law for the series BB3 (results of Masuda): A, M 051720; 8, M 051740; ®

C, M 051760 Figure 11 Steady state compliance for results of other authors: A,

reference 12; B, reference 10; C, reference 13. Curves relative to
equation (10) deduced from our blending law

I+ / CONCLUSION
The blending law that we propose accounts for the viscoelas-
tic properties of binary blends of polystyrene fractions with
a molecular weight higher than the critical weight M. It in-
volves only one adjustable parameter p that might be inde-
pendent of the composition of the blend. It allows one to
predict the behaviour of blends over a large frequency range,

oQlog : . . .

NS if one chooses a satisfactory analytical expression for repre-
@ senting the complex viscosity n* (or the complex modulus
o . .
| G* or the complex compliance J*) of a monodisperse

polymer,

It should be possible to apply this law to binary blends
of narrow distribution samples of other polymers.

Finally, the extension of this law to those polymers
which have a large continuous distribution of molecular
weights will permit one to investigate precisely the effects
of this distribution on the rheological properties of such

0 systems.
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J eOb calculated from BMEO blending law are too low.
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